

Composites Manufacturing

Liberation Ordinary

Liberty Aerospace Soars With its XL2 airplane
Mystery Behind Carbon-carbon Composites
Composites Solution for the Boeing 767
Lighting the Way: Gordon Brothers'
Thriving Family Business

Liberty Aerospace Soars With its XL2 Airplane

Dy Scofi M, Lewit

ocated on a stretch of eatern Florida called the "Space Coass," it's no surprise that Melboume is home to Liberty Acrospace Inc. Founded in 2000. The company manufactures and markers the Liberty XI2, a certified two-seat touting airtraft designed for private pilots.
At first glance, those pilots have litte in common with the astronauts working an hour north at Kennedy Space Center. The XI 2 measures only slightly more than 20^{\prime} long and raches a maximum operating maneuvering speed of 115 mph , while the space shurre looms approximarely 150° tall and travels at more than $17,000 \mathrm{mph}$. But che people who climb into the cockpiss of both have two things in common: They are adventuress who love saaring into the skies and they are better enabled thanks to advanced composites.
The innowative team at Liberty Acrospace sought to create a next generation, advanced aircraft at the lowest possible purchase price and operating cosis for adyenture-secking pilots. The result was the X1.2. which has a central body-or fuselage-consrructed of compasites and removable wings and other control surfaces made from aluninum.
I was intrigued by the choice of materials for the XI 2 - The benefits of a composite fuelage were clear, but the selection of metal wings and control surfaces suprised me. Since my company, Structural Composites, is only a few miles down the road from Liberty Acrospace. I hopped in my car recently to tour the acrespace companys 52,000 -plas square foot faciliny at the Melbourne International Airport.

[^0]
A Certified Success

Prior to touring the facility, 1 received a brief hivtory of the X1. 2 froms jason Russell, chief design engineer at Liberty Acrospace. The plane har its roots in the Eutopa, an experimental kit plate designed by Ivan Shaw. Joining Liberty's team of engineen and designers, Shaw helped the company develop a detign concept for the XI.2. The company's goals were to create an aincraft with some of the following requirements.

- Low price
- Economy and ease of mainternance
- Advanced atructural materials olficing, strengrh and durability
- Exrellent handling

In April 2001, the Likenty X 12 departed on is maiden voyages, and for the next sevenal years, the company painstakingly developed and terted the planci spin, fatigue, weight and balance, and more.

In 2004, the Federal Aviation Adminif: tration awarded Libery Aerospace with Part 23 Type Certification for the X12, recognizing the aircaft's airworthiness standards, It was the fing two-seat aircraft
to be awarded certification in more than 30 years. In addition, the XI2 was the first piston-engine aircraft to be certified with a Full Authority Digital Engine Control (FADEC) system. Simply put, a computer controls the engine.

While the company is proud of itrcertifications, customers may be more impressed with some other figures The price for the X12 ranges from $\$ 188,000$ to $\$ 212,000$. The aircraft sips fuel, using only 5.5 gallons per hour at a cruising speed of 125 knots. Thats more than 26 miles per gallon-a welonme number for

Into the Wild Blue Yonder

A four of Liburty Aerospace would not be complete nith inut a lial tlight. Atter a prellight check with the theip of my instructor Paul Everitt. business development maniger for Libetty, I enter the XL.2 by climbing on the wing, putting ing leet in the cocipit, then silding into the seat. The cockpit is wry spactious, and the cation liber seats are molded irto the fuselage. The sast is limed so the nutdor pedals thave nove to adapt to your body site. The lage windous allon exdented visibility, and the in: strument panel and controis ate all logically placed for easy access.

The XL2 contains a lous-point sealbelt compared to the namal theerpoint seatbells in other aircuitts. Everitt explains other dilferences of the aircatt corpared to the widely used 1725 P manulachered by Cesser:

- The XL2 utilizes a stiot insteat of a yoke 10 .
- Feet control the rudders.
- The brales are finger-cortanlled on the center console:
- The XL2's front wheels do not hum the rudeer conitrols.
- Eevets near the throtile control act as brakes for the lett and rigitt main ateets.
- The rudder contiols tuming during taxing.

The X2.2 is approved for Full Aufthitily Digital Engine Contiof (FADEC) which means a computer controls the engine, This oters several advantager: Its simple for the upeator. A compiter contiols the eloctronic fuat injection and fuel midtise, to the onty tngine contint is the troutile. The computer scans the engine parameters and optimizes it several tirmes a secend. The FADEC systam cansists of two redundant carputer sydens: If one expeificies a problem, the backup systiom thites over.

Starting the engine is about as eassids starfing a car: Ater obtaining authoriation from Melbourne International Aisport tratic control tover, I tari to our designatef runway. Atter only a litile throltse, whe lightheight plane begins to move A stight puth with my finger and the plane turns nicelly. Once moving. I don't hawe to use the finger hrakes muct as the rodider is eflective at staying on the centerfine.
 will nolice is that you do not need to rotne much to tike oll," he syys. The $\times 2.2$ uses push-ot cormols throughout instaad of cabies. You simply iet

Tre phane buld up speed and apply slight back pressue on the spick: Once cleared too lake off we tai onto Rurway 5. The XL. 2 accelerates. ampotity, Once we reach 60 knots and apply back pressure, we are airbome We reach 2, too teot and head south. I erioy the spectacular vew fum the codipit: Low wings and large wintows give the sentation of buing in an spen cockpit arplane. During various manewees, I notice thaille plane is vey responsive and smooth. I could hold a steep tum wilhoul pulling too much back pressure on the stick or asding a lot of adifitanal power:

Din roilh tuck to the airpot, Everitl discusses landing the aifplane. -As wo pipt close to the rufvay. I will fell you atien to poill cut powis, the ther aircait hoomilly and then fust wait lor the stow sink towaid the
 The banding is eavy aud smoolth.

As wer laxe hack to the ramp. I think what a nice job Liberty tias done on the XI? 1 thatly Aesospace is fruly an American success stary!
pilots whote wached the cost for aviation fuel skyrocker to more than $\$ 5$ per gallon.

Liberty Acrotpace has clearly achieved its goals of crating an advanced airplane with low purchase and operating coss, Having leamed a bit about the company and its pionecring airplanc, I was ankious to begin my tour and see how the XL2 is built.

Inside the Composites Layup Shop Liberry Aerospape is currently in full prodaction: It's manufactured more than 100 aircrafts and has a backlog of ordets around the worid. The company's main ficility is divided into three primary seg: mentes the composites liyup stop, the cure and finich shop and the assembly area.
As Russell and I leave the executive offices and walle towand the composites layup shop, he answers some of py questions about using a combination of composite and metal materials. One of the reasons that Liberty Aerospace selected aluminum wings was to faclitate maintenance. "Wings stick out and chings that stick out tend to get bumped," says Russell. "Repair on a composite wing is a big deal. The expense factor and difficulty in locaring the FAA-cerrified expertise to execute the repair did not fit our low coss to maintain' mission."

Mokled Fuseloge for the LX2 atter beng oven cured, When trimmed the part weighe between 101 and 109 lbs .

Ansother factor in uvilizing aluminum is having remorable winge "Much of our market is supplying tuiner aircriffs both here and overseas," sys Russell. He continues, ${ }^{\text {W Wings that can be taken on and }}$ off quickly area plas for storige, transport and airplane maintenance." It takes two people approximately five minutes to in-
stall the wing on an XX .2 . So if the wing sistains minos damage, the hangar can swap our the wing and have the plane up and flying agoin in minutes.

Russell and 1 enter the composites layup shop, where construction occurs on the XL. 2's carbon fiber prepreg composite fiusclage. Dimmediately notice dhat it's >

WATERJET COMPOSITE CUTTING

The Superior Method for Cutting Composites

Increase productivity und flexibility while enhanoing patt quafity Flow uitrahigh-pressure waterjets are a superior method for cutting virtually aty composite material with a high level of aceuracy and no duat pe toxic fumee. Not only are they faster than mast traditional machining methods, but because they cut with very litile lateral foroe, fixuiring requirementa are dramatically simplified. As a result, work flexibility is improved and capital investment is reduced. Contact Flow to leam how our watarjet bystems will improve your bottom line.

To feam more call 800.446.FLOW or visit www.flowcerp.com

Ruddar assembles for the XL2.
climate controlled and ulua dean, Worken in pristine lab couts and gloves are busy placing the prepreg feinforcement into molds or bagging parts that have had material laid in them.

Im introduced to Adam Maxfied, composites shop manager. who explains that we are in the Clean Room, where Liberty sores, cuts and places the prepreg onto the mold. Rolls of prepreg ate stored in a wall-in freeter ptior to kit cutting along with completed lais. The rolled goods ate taken from the frezer and placed on a Gerber CNC fabric cutter. Workess then cut the

Let Us Make Your Vision A Reality

- critoral egumant

AV Erummeat Con Be Cratamzizito Mect Your Meqaitrmentz
$\cos \cos +5$
stacks are haid. The process is mepeated until the full laminate stack is compleed.
"Some parss of our laminates consiir of 33 to 99 steps, wtich can equal up to thousands of plies of marcrial, some with core, so you can imagine the effort needed to get the part ready for the oven," says Maxfield.

Watching the crew drape the prepreg into the tool, I notice the overlaps are. smaller than the minimum two inches used in the marine industry, Since much of my experience is in the marine market, I ask Maxfield to explain the difference. He rells me, "Our overlaps are a minimum of V inch and are a maximum of one inch, which is adequate for load transfer. We are always rying to save weight."

Once the layup is completed, the part is again bagged and made ready for the oven. Walking around the shop it is clear that excellent vacuum bagging skills-and pa-tience-are job requitements at Liberry. *Our console is a challenging part to produce. It consists of three molds, each of which is preloaded with fiberglas prepreg" sans Maxfield. "We chen put the molds together and lay prepreg over the seam. Once this is done and pasee inspection, we then proceed to lag the part."

Libery uses a "glove bag" technique to bag the inside of deep parts with limited acceas, auch as the wheel fairing. We use two bags, one large and one small, which have been sealed on three sides with tacky tape," explains Maxfield. "We talee the

Workers at Liborty Aerbepace lay proprog carban minforcements into the mold.

small bag and flip it inside out so the tacky tape forms a seam in the center. The small bag is insered into the cavity and seals to the larger outer bag,"

Curing, Finishing and Assembly

Once all checles and cross-checks are made on the bagged part, it moves to the cure and finishing shop. This is where you toally see the airplane taking shape. Cured
parts are in various stages of trimming, 2ssembly and finishing.

Once in the shop, I pick up an unpainned firestage, and I am shoclad at how light the pat i' Maxfield tells me the X1.2 ommposite fuselage weighs between 101 and 103 pounde. Not only is the weightamazing, hut the natiow range of yariance between the
("Lbenty Aercspaice" cortinues onp, 47)

parts deaty demonsitrite the benefil of the prepreg and the tighty controlled manufacturing environment.

I walk ower to Liberty's two ovens usad for curing parss. Cure-time depends on the part and the laminate schadule. Maxiedd discuses the operation: "Our thicker laminates undergo a soak-dwell, where we heat the parn to $190^{\circ} \mathrm{F}$ for two hours, then rive the emperature to $270^{\circ} \mathrm{F}$ for 1.5 houm, " he says. Thinner 6-and 2-ply luminates can go directly wo $270^{\circ} \mathrm{F}$ and will need to stay at temperature for 120 to 150 minutes."

When a complaty bonded fuschage is placed in the oven for post curc, an employee at Liberty Acrospace attadhes themocouplens to it to monitor temperature spess and regulations throughout the onen gyde Documentrtion is required to produce a certified airctafi,

Once out of the oven, componenssare cooled and de-molded. Next, they ate trimmed and integrated with other asemblies Trimming is controlled with full-sale templates and drill igs. Then its on to the Ginish shop, where the surface of the curred assembled parts ate umoothed using a lightweight fairing compound. The surfice is sanded, painited and sent to asembly-

The usembly area ut Liberty operntes like a manufacturing line. The plane rests on carss until it is sufficicady buils to ride on its awn wheels. Aitplane-like boats-need various wires, cables and sub-components insalled. However, unlike with boiss, everything needs to be documented and signed off by an FAA-certified inspector before moving to the next sicp.

While Libery Aeroxpace produces the composite fuselage on site, it has a contract with S.C. Constructii Aetonautiox S.A. in Romania ro fabricate the chassis, wings and various metal parts. All the pinces come rogather in the company's production unit in Med. bourne. The hicadquares also bouses a flight test and delivery center: (See "Into the Wild Blue Yonder" (or a glimpse at a test flight.)

Affer touring the plant, I beter appreciate the hard effort and sleepless nights the Liberty team spent designing, developing and cerifying this aireraft. The risks were high, bur 1 Kb ery is starting to see the rewards and llying high with itx $\times 12$.

Scott Lewit, OCTH, is president of Siructural Composites and Compoys. He may be feached al 321-951-9464: slewitiegol com.

Composite Materials and Supplies

DE-COMP COMPOSITES,

 INC.R 4 Box 4460 Gleveland, OK 74020

918-358-5881 Fax : 918-358-3750

E-mail: email(Gdecomp.com

Web Site: www.decomp.com

Virtually A One-Stop Shopping Center

Carbon, Fiber Gliss, \& Kevlar Fabucs
Bagoina Fita
Breathes/Bleeder
Rulease Films
Release Fabrics/Peel. Puies
Tapes
Vacular Valves \& Hoses
Sealant Tapes
Release Liguins
Curina Tcous
Resins
Toolng Fabrics, Straxturas, \& Supplis
Many, Many More Pronects

ADHESIVE DISPENSING

 Piston and Gear Dispensing Systems for Composite Manufacturing
www-ashbycross.com

[^0]: 1. The Libery XL.2 proves that catbon Jiber prepreg cocsiruction can be used in an affordable aircratt.
 2. Parts are placed in this listure and trimmed to shape,
 3. The Instrument Conscle of the Xa.2 m mude from Fibergass prepreg.
 4. Removable wing connection delat
 5. The production assembly ine af Litespy Ammpnce
